Почему велосипед не падает при движении - Infinity-Terra.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Почему велосипед не падает при движении

Велосипед не падает из-за центробежной силы

Для сохранения равновесия любого тела необходимо, чтобы перпендикуляр, опущенный из центра его тяжести, не выходил за площадь опоры. Чем меньше последняя, тем менее устойчиво положение.

Площадь опоры велосипеда предельно мала – по сути, она представляет собой прямую линию, проведенную между точками касания колесами земли. Поэтому велосипед (с велосипедистом или без него) не может стоять, находясь в неподвижном положении. Но при движении устойчивость чудесным образом возвращается к нему. Почему это происходит?

Все дело в центробежной силе, которая возникает при подруливании. Если движущийся велосипед начинает наклоняться в какую-нибудь сторону, велосипедист слегка поворачивает руль в сторону наклона, заставляя машину поворачиваться. При этом возникает центробежная сила, направленная в сторону, противоположную наклону. Она-то и возвращает велосипед в вертикальное положение. Двухколесный велосипед не способен ехать строго по прямой. Если его руль зафиксировать в неподвижном положении, он обязательно упадет, потому что исключается возможность подруливания.

Этот процесс – отклонение от вертикали и возвращение к ней – происходит непрерывно. Велосипедист даже не задумывается о том, что происходит. Его руки автоматически совершают подруливание, которое необходимо для сохранения вертикального положение. К слову сказать, именно в приобретении автоматизма подруливания и состоит обучение езды на велосипеде.

Конструкция велосипеда и поддержание равновесия

Конструкция рулевой колонки и передней вилки велосипеда облегчает автоматическое поддержание равновесия. Ось рулевой колонки (передней вилки) проходит не вертикально, а наклонно к земле. Точка ее пересечения с грунтом располагается впереди того места, где переднее колесо соприкасается с дорогой. Такая схема способствует тому, что если переднее колесо случайно отклоняется от среднего положения, сразу возникает момент реактивных сил, который возвращает его на место.

При наклоне велосипеда реакция опоры переднего колеса, которая приложена в точке его касания с землей и направлена вверх, автоматически поворачивает колесо в сторону наклона. Возникает центробежная сила и велосипед возвращается в вертикальное положение.

Для лучшего понимания этого процесса, нужно просто принять во внимание, что схема сил, действующих на переднее колесо велосипеда, является примерно такой же, как и у тележек с вращающимися колесами. В какую сторону тележку не толкать, колеса автоматически поворачиваются в нужном направлении. Кстати, именно эта особенность конструкции велосипеда обеспечивает возможность езды, не держась руками за руль. Велосипед самостоятельно поддерживает равновесие. А чтобы выполнить поворот, достаточно сместить центр тяжести своего тела в сторону.

Степень способности конкретного велосипеда поддерживать динамическое равновесие определяется конструкцией его рулевой колонки и вилки. Главный параметр здесь – расстояние от точки соприкосновения переднего колеса с землей, до точки пересечения оси рулевой колонки (передней вилки) с грунтом. Как уже говорилось, последняя находится впереди первой. Реактивный момент, действующий на колесо при его повороте, будет тем выше, чем больше это расстояние. Для оптимальных динамических характеристик велосипеда требуется не самый большой, а строго определенный реактивный момент. Слишком малый уменьшит автоматическое поддержание равновесия, чрезмерно большой – приведет к возникновению «шимми». Поэтому наклон оси рулевой колонки и параметры передней вилки при проектировании велосипеда выбираются очень тщательно.

Что такое «шимми»

При высокой скорости (выше 30 км/час) переднее колесо велосипеда может начать самопроизвольно вилять вправо-влево. Это явление, которое, кстати, имеет место и в авиации, называется «speed wobbles» или «шимми». Причина его заключается не в неисправности велосипеда (плохой сборке или ослаблении креплений), а в том, что возникает резонанс переднего колеса. «Шимми» очень опасно в том случае, когда велосипедист едет «без рук», то есть не держится за руль. Чтобы погасить возникший резонанс, нужно снизить скорость или изменить позу.

Велосипед – энергоэффективней

По затратам энергии на единицу преодоленного расстояния велосипед эффективней не только ходьбы, но и езды на автомобиле. При движении велосипеда со скоростью 30 км/час тратится 15 ккал на 1 км. Ходьба со скоростью 5 км/час приводит к сжиганию 60 ккал на 1 км. То есть по энергозатратам на единицу расстояния движение на велосипеде в 4 раза эффективнее ходьбы.

… и функциональней

Если рассматривать езду на велосипеде с точки зрения спортивной нагрузки, то она тоже оказывается предпочтительней ходьбы. Катание на велосипеде отнимает 450 ккал в час, в то время как при ходьбе тратится только 300 ккал. Конечно, физическую нагрузку можно увеличить, перейдя с шага на бег. Но в этом случае возрастает нагрузка на колени и голеностопные суставы, что нежелательно, поскольку со временем может привести к травме этих проблемных мест.

Когда женщины быстрее

Тренированный мужчина, даже не будучи профессиональным спортсменом, может длительное время развивать мощность 250 Вт или 0,33 л. с. При езде на велосипеде по ровной дороге это примерно соответствует скорости 30 км/час. Женщины не могут развивать такой мощности, как мужчины, но в расчете на единицу веса их энергетические показатели превосходят мужские. При езде по ровной дороге, когда вся мощность тратится в основном на преодоление сопротивления воздуха, женщины едут медленнее, чем мужчины. Зато при езде в гору, когда энергия тратится на преодоление силы тяжести, они способны ехать быстрее сильной половины.

LiveInternetLiveInternet

Рубрики

  • Анимированные гифы (картинки) (90)
  • Лошади. (86)
  • Автомобили буквально все заполонили (39)
  • Всякая всячина или обо всем по немногу (20)
  • Психология (1)
  • Велосипед не роскошь, а средство (19)
  • Компьютеры и интернет (18)
  • Видеотека (фильмы и мультфильмы) (16)
  • Навигация по дневнику (12)
  • Берег успеха (8)
  • Фантазия Юраллайт (7)
  • My diary (4)
  • Музыка (2)
  • Мечта — все сбудется (0)
  • Собаки большие и маленькие — Груминг (0)

Метки

Помощь новичкам

Музыка

Интересы

Друзья

Постоянные читатели

Сообщества

Физика велосипеда. Почему велосипед не падает?

Вторник, 01 Декабря 2009 г. 10:39 + в цитатник

Для того, чтобы двухколесный велосипед не упал, нужно постоянно поддерживать равновесие. Поскольку площадь опоры велосипеда очень мала (в случае двухколесного велосипеда это всего лишь прямая, проведённая через две точки, в которых колеса касаются земли), такой велосипед может находиться только в динамическом равновесии. Это достигается с помощью подруливания: если велосипед наклоняется, велосипедист отклоняет руль в ту же сторону. В результате велосипед начинает поворачивать и центробежная сила возвращает велосипед в вертикальное положение. Этот процесс происходит непрерывно, поэтому двухколесный велосипед не может ехать строго прямо; если руль закрепить, велосипед обязательно упадёт. Чем выше скорость, тем больше центробежная сила и тем меньше нужно отклонять руль, чтобы поддерживать равновесие.

При повороте нужно наклонить велосипед в сторону поворота так, чтобы сумма силы тяжести и центробежной силы проходила через линию опоры. В противном случае центробежная сила опрокинет велосипед в противоположную сторону. Как и при движении по прямой, идеально сохранять такой наклон невозможно, и подруливание осуществляется точно так же, только положение динамического равновесия смещается с учётом возникшей центробежной силы. Конструкция рулевого управления велосипеда облегчает поддержание равновесия. Ось вращения руля расположена не вертикально, а наклонена назад. Кроме того, она проходит ниже оси вращения переднего колеса и впереди той точки, где колесо касается земли.

Благодаря такой конструкции достигаются две цели:

— При случайном отклонении переднего колеса от нейтрального положения возникает момент силы трения относительно рулевой оси, который возвращает колесо обратно в нейтральное положение.

— Если наклонить велосипед, возникает момент силы, поворачивающий переднее колесо в сторону наклона. Этот момент вызван силой реакции опоры. Она приложена к точке, в которой колесо касается земли и направлена вверх. Из-за того, что рулевая ось не проходит через эту точку, при наклоне велосипеда сила реакции опоры смещается относительно рулевой оси.

Читайте также:  Велосипед по росту и весу

Таким образом, осуществляется автоматическое подруливание, помогающее поддерживать равновесие. Если велосипед случайно наклоняется, то переднее колесо поворачивается в ту же сторону, велосипед начинает поворачивать, центробежная сила возвращает его в вертикальное положение, а сила трения возвращает переднее колесо обратно в нейтральное положение. Благодаря этому, можно ехать на велосипеде «без рук». Велосипед сам поддерживает равновесие. Сместив центр тяжести в сторону, можно поддерживать постоянный наклон велосипеда и выполнить поворот.

Можно заметить, что способность велосипеда самостоятельно сохранять динамическое равновесие зависит от конструкции рулевой вилки. Определяющим является плечо реакции опоры колеса, то есть длина перпендикуляра, опущенного из точки касания колеса земли на ось вращения вилки; или, что эквивалентно, но проще измерить – расстояние от точки касания колеса до точки пересечения оси вращения вилки с землёй. Таким образом, для одного и того же колеса возникающий момент будет тем выше, чем больше наклон оси вращения вилки. Однако для достижения оптимальных динамических характеристик нужен не максимальный момент, а строго определенный: если слишком малый момент приведёт к трудности удержания равновесия, то слишком большой – к колебательной неустойчивости, в частности – «шимми» (см. ниже). Поэтому положение оси колеса относительно оси вилки тщательно выбирается при проектировании; многие велосипедные вилки имеют изгиб или просто смещение оси колеса вперёд для снижения избыточного компенсирующего момента.

Распространённое мнение о существенном влиянии гироскопического момента вращающихся колёс на поддержание равновесия является неправильным. На высоких скоростях (начиная примерно с 30 км/час) переднее колесо может испытывать т. н. скоростные виляния (speed wobbles), или «шимми» – явление, хорошо известное в авиации. При этом явлении колесо самопроизвольно виляет вправо и влево. Скоростные виляния наиболее опасны при езде «без рук» (то есть когда велосипедист едет, не держась за руль). Причина скоростных виляний – не в плохой сборке или слабом креплении переднего колеса, они вызваны резонансом. Скоростные виляния легко погасить, снизив скорость или изменив позу, но если этого не сделать, они могут быть смертельно опасными.

Езда на велосипеде эффективнее (по затратам энергии на километр) как ходьбы, так и езде на автомобиле. При езде на велосипеде со скоростью 30 км/ч сжигается 15 ккал/км (килокалорий на километр), или 450 ккал/ч (килокалорий в час). При ходьбе со скоростью 5 км/ч сжигается 60 ккал/км или 300 ккал/ч, то есть езда на велосипеде в четыре раза эффективнее ходьбы по затратам энергии на единицу расстояния. Поскольку при езде на велосипеде расходуется больше калорий в час, она также является лучшей спортивной нагрузкой. (При беге затраты калорий в час ещё выше, но вибрация травмирует колени и голеностопный сустав). Тренированный мужчина, не являющийся профессиональным спортсменом, может в течение длительного времени развивать мощность 250 ватт, или 1/3 л.с. Это соответствует скорости 30-50 км/час по ровной дороге. Женщина может развивать меньшую мощность, но большую мощность на единицу веса. Поскольку на ровной дороге почти вся мощность расходуется на преодоление сопротивления воздуха, а при езде в гору основные затраты – на преодоление силы тяжести, женщины, при прочих равных условиях, едут медленнее по ровному месту и быстрее в гору.

Блог им. mike — Почему велосипед не падает?

Один мой товарищ, серфя интернет наткнулся на сайт с вечными вопросами, наподобие, почему лед скользкий. Там же была министатья со ссылкой на оригинальное исследование, почему же велосипед едет. Оказывается, большие дяди от науки, отвлекаясь от элементарных частиц и от священной нанофизики, уделяют время и этому вопросу. Они создали модель велосипеда свободную от двух самых больших «помощников» велосипедиста: гироскопического эффекта и наклона вилки переднего колеса (кастора)… и даже эта модель оказалась стабильна!

Что такое устойчивость и зачем она нужна?

Велосипедист на покоящемся велосипеде изначально находится в состоянии неустойчивого равновесия. Любое возмущение приведет к выходу из неустойчивого равновесия – в нашем случае на землю, где он будет пребывать, сколько захочет. Внизу примеры неустойчивого и устойчивого равновесий.

Но все меняется, когда велосипед едет. В этом случае, если велосипед захочет упасть, его переднее колесо поворачивается так, чтобы восстановить вертикальное положение. Причем, это возвращение заложено в саму физику велосипеда, так что райдеру, на самом деле, и делать ничего не нужно. Велосипед, разогнанный до определенной скорости (в статье приводится значение в 15-20 км/ч), может ехать в стабильном вертикальном положении и без велосипедиста.
Из-за того, что велосипед стабилен лишь в движении, но не в покое, можно сказать, что эта система устойчива динамически.

Что помогает велосипеду возвращаться в изначальное положение?

Два эффекта, вносящих наибольший вклад – это гироскопический эффект и кастор переднего колеса.

Гироскопический эффект – эффект, возникающий во вращающихся системах, обладающих определенным угловым моментом, когда пытаются изменить направление оси вращения. Сила, возникающая в таком случае, называется гироскопической силой. Гироскопический эффект нетривиально объяснить, но его легко почувствовать. Самый простой эксперимент, который каждый из вас может поставить в домашних условиях, – это взять колесо велосипеда за ось, раскрутить и попробовать помахать им в воздухе. Вы почувствуете силу. Причем, чем больше раскрутите колесо, тем больше сила. На этой же силе основана тренировка с powerball , только система там немного оптимизированнее. Когда вы наклоняете велосипед – наклоняется и ось переднего колеса, колесо за счет гироскопического эффекта поворачивает в сторону наклона.

Кастор в нашей литературе – это угол наклона оси поворота автомобиля. Там это: caste r effect , castor и т.д. Наш угол наклона рулевой – тот же кастор.

Существование кастора приводит к тому, что точка контакта переднего колеса находится за воображаемой точкой пересечения линии вилки и земли. Это приводит к так называемому «следу» или trail переднего колеса. Эффект от такой геометрии вы можете наблюдать на тележках в ашанах: колесо всегда стремится волочиться за тележкой. При стабилизации это проявляется в том, что при наклоне велосипеда переднее колесо стремится «провалиться» в сторону наклона велосипеда, тем самым, поворачивая колесо в сторону

А что если убрать эти два эффекта? J. D. G. Kooijman, J. P. Meijaard, Jim M. Papadopoulos, Andy Ruina, и A. L. Schwab собрали модель велосипеда, в которой оба эффекта отсутствуют – two- mass — skate ( TMS ).

Они сильно уменьшили след колеса и перевернули его задом наперед, уменьшили размеры колес и добавили вторичные, которые крутятся в другую сторону, чтобы исключить гироскопический эффект.

И как видно из видео, модель все еще оказывается стабильной!

А выводы достаточно размыты. Во-первых, если исключить кастор и гироскопический эффект, то силы, которые могут стабилизировать велосипед, должны возникнуть из взаимодействия колеса с поверхностью при движении. Во-вторых, хоть кастор и гироскопический эффект и не обязательны, их нельзя рассматривать изолированно, т.к. со слов авторов можно построить системы, которые при наличии только одного из эффектов окажутся нестабильными на любых доступных человеку скоростях. Т. е. для стабильности важно взаимодействие этих двух эффектов. Это значит, что нет универсальных схем для всех типов байков, что дает большой простор для производителей и маркетинга.

Ps . Когда разбирался в этой статье, наткнулся на обширную статью на EnWiki про вело- и мотодинамику, о том, какие силы влияют на движение байка, про разные эффекты, геометрии и т.д. с количеством ссылок > 50. При желании могу пересказать ее по частям сюда.

Почему велосипед под нами не падает? Эффект гироскопа тут ни при чем

Поделиться сообщением в

Внешние ссылки откроются в отдельном окне

    Внешние ссылки откроются в отдельном окне

    Мы и не подозреваем, насколько напряженно и неустанно наш мозг работает над тем, чтобы мы не упали.

    Читайте также:  Отдельная ручка для детского велосипеда

    Об очень легком задании британцы говорят, что это «просто, как кататься на велосипеде». Но как нам удается удерживать этот самый велосипед от падения?

    Большинство скажет, что дело в эффекте гироскопа. Но в действительности дело обстоит совсем иначе.

    Иными словами, гироскопический эффект объясняется тем, что вращающееся колесо стремится продолжить вращение вокруг своей оси (так остаются на своей оси вращения волчок и даже планета Земля).

    Этот эффект заметен мотоциклистам, ведь колеса у мотоциклов большие, массивные и вращаются быстро. Но простой велосипедист с ним не сталкивается — колеса велосипеда намного легче, а на прогулочной скорости они крутятся недостаточно быстро.

    Если бы в педальном велосипеде использовался эффект гироскопа, то любому новичку было бы достаточно оттолкнуться ногой, чтобы поехать

    Если бы в педальном велосипеде использовался эффект гироскопа, то любому новичку было бы достаточно оттолкнуться ногой — все остальное сделали бы за него законы природы.

    Но на самом деле вам придется учиться кататься на велосипеде так же, как вы в свое время учились ходить.

    За умение ездить на велосипеде отвечает исключительно ваш мозг.

    Представьте себе, что вам нужно проехать по абсолютно прямой линии, нарисованной на совершенно ровной поверхности. Конечно, это же очень просто! А вот и нет.

    По узкой прямой линии проехать почти невозможно — точно так же, как даже в трезвом состоянии вам вряд ли удастся пройти по ней, не оступившись. Попробуйте сами.

    Проведите еще один маленький эксперимент: попробуйте устоять на одной ноге на цыпочках, используя руки, чтобы удержать равновесие.

    Трудно, правда? А теперь попробуйте то же самое, но перепрыгивая с ноги на ногу. Сохранять равновесие станет намного легче.

    Именно так вы бегаете. Ваш мозг научился вносить маленькие коррективы при каждом прыжке: например, если вы отклонились вправо, то на следующем шаге сдвинетесь чуть влево.

    Точно так же происходит езда на велосипеде: с каждым оборотом педалей вы немного меняете направление.

    Начиная падать вправо, вы неосознанно поворачиваете руль в ту же сторону, чтобы изменить положение колеса, а затем так же неосознанно возвращаетесь на прежнюю траекторию движения.

    Такое «виляние» совершенно нормально. Оно более заметно у новичков (особенно у детей), которые ездят по довольно крутой «синусоиде», и практически незаметно у опытных велосипедистов.

    Тем не менее эти небольшие колебания являются частью процесса и объясняют, почему так сложно пройти (или проехать) по совершенно прямой линии — в этом случае вы лишены возможности совершать те самые необходимые движения из стороны в сторону.

    Кроме того, в конструкции велосипеда есть несколько полезных решений, облегчающих езду.

    Самое важное из них — наклон рулевой колонки (или так называемого рулевого стакана), благодаря которому переднее колесо касается земли в точке, находящейся сзади от точки проекции рулевой оси на землю. Расстояние между этими точками называется выкатом.

    Выкат в значительной степени помогает сохранять равновесие, когда вы едете без рук: если вы, например, наклонитесь вправо, сила, действующая на так называемое пятно контакта с землей, повернет переднее колесо направо.

    Это свойство облегчает управление и позволяет рулить без рук, слегка наклоняясь влево или вправо.

    Но существуют и велосипеды с вертикальными рулевыми колонками, на которых также можно отлично ездить. На самом деле, сделать велосипед, на котором будет невозможно ездить, весьма сложно, хотя многие и предпринимали такие попытки.

    На то, чтобы научиться ездить на велосипеде с обратным рулем, уйдут месяцы тренировок

    Дело в том, что велосипед не падает только благодаря вам и вашему сознанию, и доказать это просто.

    Попробуйте, например, перекрестить руки. Вы не сможете даже тронуться с места, а если сделаете это на ходу, то рискуете сразу же упасть. Если бы велосипед удерживался вертикально с помощью эффекта гироскопа, этого бы не произошло.

    Клоуны и уличные артисты ездят на велосипедах с обратным рулем. На то, чтобы научиться этому, уходят месяцы тренировок: ведь нужно полностью разучиться ездить на обычном велосипеде. Просто поразительно, как работает наш мозг!

    А что же с эффектом гироскопа, о котором я упоминал выше? Помогает ли он хоть немного? Нет, если только вы не разгонитесь до очень большой скорости.

    Существует известный эксперимент, якобы доказывающий влияние этого эффекта на колесо велосипеда, однако расчеты показывают, что его сила далека от того значения, которое могло бы удержать вас в вертикальном положении во время езды.

    Чем больше вы будете вилять, тем лучше

    Чтобы доказать, что эффект гироскопа не имеет значения, я построил велосипед со вторым передним колесом, вращающимся в противоположном направлении. Эта идея не нова: такое же устройство сделал в 1970 году Дэвид Джонс. Нам обоим пришла в голову одна и та же идея.

    Если объяснить вкратце, то вращающееся в обратную сторону колесо уничтожает эффект гироскопа для переднего колеса и доказывает, что на самом деле единственное, что удерживает вас от падения, — это деятельность вашего мозга.

    Это еще и забавный эксперимент, проделать который может каждый.

    Итак, какой же способ обучения езде на велосипеде является наилучшим? Знаете, мне не нравится, когда дети учатся кататься с тренировочными маленькими колесиками по бокам: каждый раз, касаясь ими земли, они утрачивают навык сохранения равновесия.

    Ваш мозг должен научиться корректировать курс, так что снимите тренировочные колесики — и чем больше вы будете вилять, тем лучше.

    За умение ездить на велосипеде на самом деле отвечает только ваша голова.

    • Оригинал этой статьи на английском языке вы можете прочитать на сайте BBC Future. Полная ее версия первоначально была опубликована на сайте The Conversation и была перепечатана по лицензии Creative Commons.

    Почему велосипед не падает

    Почему велосипед не падает, не вполне понятно, особенно на первый взгляд. Площадь его опоры очень мала, даже если шины весьма широкие и слабо накачаны. Поставленный вертикально, он долго не простоит. Обычно он падает на бок через 2 — 4 секунды, но если его удачно толкнуть вперед, падение случится через 10 — 15 секунд. Именно этим велосипед решительно отличается от трёхколесного велосипеда и четырехколесного автомобиля. Даже если отбросить влияние велосипедиста на устойчивость, то во время езды велосипед гораздо устойчивей, чем во время остановки. Управляться он может также по-разному, и не только поворотом руля. Если вспомнить езду «без рук», то становится понятно, что факторов, обеспечивающих устойчивость велосипеда, несколько. Рассмотрим главные. Но прежде, еще одно короткое замечание: у велосипеда существуют две устойчивости и одна управляемость. Первая устойчивость — это вертикальная, вторая — продольная, или курсовая устойчивость, а управляемость — только продольная (курсовая). Само собой, чем лучше продольная устойчивость, тем хуже управляемость, и наоборот. Сложность заключается во взаимосвязи этих трех важных параметров. Один влияет на другой, другой на третий и рассказать, положим, о вертикальной устойчивости, не упоминая продольную, затруднительно. Но в любом случае, каждому практикующему велосипедисту важно сохранить равновесие, или баланс и катить в правильном направлении.

    Равновесию на малой скорости или даже стоя на месте, как лихо демонстрируют некоторые умельцы, помогает геометрия вилки и рулевой колонки. Поворачивая руль, мы сдвигаем центральную линию велосипеда, проходящую через точки контакта с поверхностью переднего и заднего колес. Так мы подстраиваем ее под слегка сдвинувшийся в сторону центр тяжести велосипедиста и его верного двухколесного коня. Балансирование на месте всем хорошо известно и знакомо — это сюрпляс. Подробно о полезных свойствах вилок и их влиянии на устойчивость можно посмотреть чуть ниже.

    Вид сверху показывает, как эту линию шин можно сдвинуть в сторону поворачиванием руля из стороны в сторону. Это очень важно для баланса на низкой скорости.

    1. Ось поворота на уровне земли
    2. Линия через пятна контакта шин
    3. Центральная линия

    1. Вылет
    2. Ось рулевой колонки на уровне земли
    3. Боковая сила из-за угла скольжения
    4. Наклон
    5. Пятно контакта шины с дорогой
    6. Отклонённое колесо

    1. 1/2 дюйма
    2. Ось рулевой колонки на уровне земли
    3. Передний вылет
    4. 7 — 10 грудусов
    5. Задний вылет
    6. 1/2 градуса
    7. Линия движения

    Какую скорость считать малой, а какую — большой? Это нетривиальный вопрос. Но все-таки можно получить приблизительную оценку минимальной скорости устойчивого движения велосипеда. Помогает этому теория движения твердого диска (обруча, колеса) по плоскости без проскальзывания. Согласно ней, для обеспечения устойчивости такого диска, близкого к диаметру велосипедного колеса, достаточно скорости около 1 м/сек, или 3,6 км/час.

    Скорость ниже минимальной — это уже искусство балансирования, или сюрпляс на треке. Система, составленная из велосипеда и велосипедиста, конечно, очень далека от простого катящегося диска или обруча, но данное значение показывает порядок величины минимальной скорости, необходимой, чтобы устойчиво держаться на велосипеде. И, как каждому хорошо известно, имеет приближенное согласие с повседневным опытом.

    Но ведь велосипед — это вам не какой-нибудь «Харлей». Велосипедист весит гораздо больше, чем велосипед, на котором он сидит. Поэтому чтобы держать равновесие на велосипеде в некоторых ситуациях, например, на узкой колее, тропинке, лыжне можно перемещать центр тяжести как вправо, так и влево, меняя положение тела велосипедиста относительно велосипеда. Нужно, как бы отталкиваясь от него в сторону, противоположную первоначальному отклонению, сохранять равновесие, продолжая неуклонное движение вперед. При этом более высокий центр тяжести велосипедиста сильнее воздействует на общий баланс системы велосипедист — велосипед и дает больший контроль над положением и движением велосипеда. Еще один полезный способ движения корпусом при рулении рассмотрим ниже.

    Представим себе обычный случай: велосипедист поворачивает со скоростью v по кругу с радиусом R. Для сохранения равновесия велосипедист должен наклониться на угол α от вертикали или, что тоже самое, на угол φ=90° — α от горизонтали, чтобы компенсировать центробежную силу (смотрите рисунок выше). Условия равенства сил приводят к известной еще со школы элементарной формуле ctg α=(v 2 /gR)=tgφ≤μ (1), где μ — максимально возможный в данный момент коэффициент сцепления шины с дорогой. Для реальной оценки его надо уменьшать на 20 — 25% по сравнению с многочисленными табличными значениями, g — ускорение свободного падения, равное 9,81 м/сек. Велосипедист поворачивает благодаря силам трения между дорогой и передним колесом. Если дорога скользкая или покрыта льдом, то контролируемый поворот становится затруднительным или невозможным. Вместо поворота может произойти занос переднего колеса, потеря равновесия и падение.

    Пусть теперь велосипедист, спокойно катясь по прямой, ровной и гладкой дороге и любуясь проплывающим мимо пейзажем, случайно отклонился от вертикали на небольшой угол αl. Чтобы не упасть, велосипедист старается повернуть руль в сторону наклона велосипеда на угол β. Спрашивается, на какой угол надо повернуть руль, дабы не упасть? Для ответа достаточно посмотреть на рисунок выше и вспомнить любимую теорему синусов G=2R2sinβ (2), где G — расстояние между осями колес (база велосипеда), R2 — радиус, по которому начинает двигаться велосипед после поворота переднего колеса. Он должен быть меньше, чем радиус, по которому спокойно и уверенно поворачивает велосипедист, отклонившись от вертикали на угол αl, согласно формуле (1). Иначе выправить равновесие не удастся. Теперь подставим формулу (2) в формулу (1). И получим: sin β=(gGtgαl/2v 2 ) (3). Эта очень простая формула может рассказать много полезного.

    Первое. Велосипедисту, катящемуся со скоростью v и отклонившемуся от вертикали на угол αl, нужно повернуть руль на угол больший или равный углу β, который легко подсчитать по формуле (3).

    Второе. Чем больше скорость велосипедиста, тем на меньший угол надо повернуть руль и для восстановления равновесия и для прохождения виража. Из этого следует, что велосипедом намного легче управлять на высокой скорости, чем на маленькой. И это хорошо известно всем, кто садился на велосипед.

    Третье. Чем больше база велосипеда — G, тем на больший угол надо поворачивать руль, дабы восстановить равновесие или вписаться в поворот. И так же интуитивно ясно, что по узким, лесным извилистым дорожкам легче катить на велосипеде с малой базой.

    Четвертое. Навык правильного поворота руля быстро становится автоматическим, подсознательным, и многие велосипедисты не подозревают, что даже при беззаботной езде по прямой им нужно постоянно поворачивать руль. Достаточно посмотреть на след, оставленный колесами велосипеда. Легко увидеть, что относительно прямая колея, оставленная задним колесом, всё время пересекается извилистым следом переднего. А это значит, что переднее колесо во время движения постоянно поворачивает из стороны в сторону, велосипед все время «въезжает» под регулярно падающего велосипедиста и, благодаря этому, сохраняет равновесие.

    И, наконец, пятое. Если руль не поворачивается, если рулевая колонка, положим, по каким-то причинам заклинена, ездить практически нельзя (в современном понимании этого слова). Двухколесные самокаты начала XIX века, не имевшие рулевого управления, могли катить только по прямой.

    И это приводит нас к любопытной аналогии между сохранением равновесия на велосипеде и удержанием швабры, бильярдного кия или авторучки («Паркер» с золотым пером, например) на раскрытой ладони. Действительно, как удержать кий? Сначала он стоит на ладони вертикально, а затем начинает отклоняться, и ладонь быстро перемещается в сторону наклона. Опора кия смещается, и он начинает наклоняться в другую сторону. Ладонь снова перемещается, и такое балансирование может длиться весьма долго.

    То же самое делает и велосипедист. Но возникает естественный вопрос: чем проще балансировать — шваброй или авторучкой? Ответ не вполне очевиден, но, твердо освоив школьный курс на «хорошо», получить правильный результат несложно. Прежде всего, на что похожи стоящая швабра, авторучка и катящийся велосипед? Правильно! На перевернутый физический маятник. Вместо точки подвеса есть точка опоры. И такие перевернутые маятники всем хорошо знакомы — например, механический метроном, которым задают ритм при изучении музыки. Чем выше поднимают грузик на планке, тем больше период колебаний, и тем медленнее качается маятник метронома. А если грузик опустить вниз, к точке опоры, то период колебаний уменьшится, и маятник быстро-быстро зачастит.

    С некоторыми оговорками и при малых отклонениях от вертикали его можно рассмотреть как математический маятник и написать крайне простую формулу для периода колебаний. T≈2π√ l/g , где l — расстояние от точки опоры до центра масс (ЦМ). Время отклонения от вертикали на малый угол α1 равно: t=T/4≈(π/2)√ l/g . Оно не зависит от массы швабры и «откормленности» велосипедиста. Прикинем: швабра имеет l=1м, 1=1,6*0,32=0,5 с. У авторучки же l=0,1 м, t= 1,6*0,1=0,16 с. А высокий велосипед — l=1,2 метра, t= 1,6*0,35=0,56 с. Результат прост и нагляден.

    Точно так ведет себя и любой предмет: чем он выше, чем больше расстояние от точки опоры до центра масс (центра тяжести), тем медленнее он отклоняется от вертикали на малый угол, и тем легче им балансировать или удерживать на нем равновесие. И тут вне конкуренции велосипед «Паук», у которого центр масс располагался на высоте около двух метров. Но падать с такой высоты было больно и опасно, и «Пауки» не выжили. Поэтому намозолившее глаза выражение «низкий устойчивый силуэт» справедливо только для трех или четырех колесных экипажей. Если так говорят о двухколесных велосипедах или мотоциклах, то это нонсенс и техническая безграмотность.

    Ссылка на основную публикацию